HomeHelpSearchVideo SearchAudio SearchMarc DisplaySave to ListReserveMy AccountLibrary Map


Strong-coupling theory of high-temperature superconductivity / Alexandre S. Alexandrov.

Author: Alexandrov, A. S.

Imprint:Cambridge : Cambridge University Press, c2013.

Descriptionxii, 180 p. : ill. ; 25 cm.

Note:1. Coulomb and Frohlich interactions -- 1.1. Bare Hamiltonian -- 1.2. Harmonic approximation -- 1.3. Generic Hamiltonian in the Wannier representation -- 1.4. Frohlich EPI in doped polar insulators -- 2. Small polarons -- 2.1. Canonical transformations -- 2.2. Lang-Firsov canonical transformation -- 2.3. Ideal gas of small polarons -- 2.4. Mobile small-Frohlich polaron -- 2.5. Polaron spectral function -- 3. Inverse-coupling expansion technique -- 3.1. Polaron self-energy -- 3.2. Phonon self-energy -- 3.3. Attraction between polarons -- 4. High-temperature superconductivity -- 4.1. Weak-coupling regime -- 4.2. Strong-coupling regime: Polaronic t-Jp model -- 4.3. Superlight small bipolarons in the t-Jp model -- 4.4. Interplane tunnelling of bipolarons and giant mass anisotropy -- 4.5. High Tc -- 4.6. Residual polaron-polaron repulsion and BEC to BCS crossover -- 5. Converting boson --fermion mixtures -- 5.1. Charged bosons mixed with fermions -- 5.2. Pseudogap and superconducting gap -- 5.3. Mobile fermions hybridized with immobile negative U centres -- 5.3.1. Absence of the BCS-BEC crossover in the BFM -- 5.3.2. 3D BFM: Pairing of bosons -- 6. Superconductivity from repulsion: Theoretical constraints -- 6.1. Motivation -- 6.2. Kohn-Luttinger effect from the screened Coulomb repulsion -- 6.3. Pairing of 2D-repulsive fermions on a lattice -- 6.4. Superconductivity from strong Hubbard repulsion -- 7. Theory and experiment: Confirmed predictions -- 7.1. Unconventional-upper critical field -- 7.2. Unconventional isotope effects, pseudogap and high Tc -- 7.2.1. Different isotope effects on the critical temperature and the London penetration depth -- 7.2.2. Quantitative explanation of isotope effects, Tc and the magnetic field penetration depth -- 7.3. Unconventional Lorenz number: Double-charged carriers -- 8. Experiments explained: Normal state -- 8.1. Normal state in-plane kinetics and magnetic spin susceptibility -- 8.2. C-axis resistivity -- 8.3. Normal-state orbital magnetoresistance -- 8.4. Nuclear-magnetic relaxation rate -- 8.5. Orbital diamagnetism and Nernst effect -- 8.6. Mid-infrared absorption -- 8.7. Angle-resolved photoemission and quantum oscillations -- 9. Experiments explained: Superconducting state -- 9.1. Specific heat anomaly -- 9.2. Unconventional symmetry of the order parameter -- 9.2.1. Unconventional Cooper pairs glued by conventional phonons -- 9.2.2. Strong coupling: d-wave Bose condensate -- 9.3. Doping dependence of Tc and the penetration depth -- 9.3.1. Screening of EPI and BEC-BCS crossover at overdoping -- 9.3.2. Boomerang effect and boson-fermion mixture at overdoping -- 9.4. BEC signatures in the optical sum rule -- 9.5. Giant and nil proximity effects in cuprate superconductors -- 9.6. NS and SS tunnelling: Pseudogap and superconducting gap -- 9.6.1. Cuprate band structures -- 9.6.2. NS tunnelling -- 9.6.3. SS tunnelling -- 10. Further predictions -- 10.1. Magnetic pair breaking and colossal magnetoresistance -- 10.2. Feasibility of a liquid superconductor -- 10.3. Route to room-temperature superconductivity.

Bibliography Note:Includes bibliographical references (p. 158-178) and index.

Note:High temperature superconductivity has transformed solid state science, however, its there is no single accepted theory to explain its origin. This book introduces the strong-coupling or bipolaron theory and is aimed at researchers and academics. It provides a thorough and balanced overview of the theory, discussing experimental observations, applications and alternative theories.



This item has been checked out 0 time(s)
and currently has 0 hold request(s).

Related Searches
Author:
Alexandrov, A. S.
Subject:
High temperature superconductivity.
Coupling constants.