HomeHelpSearchVideo SearchAudio SearchMarc DisplaySave to ListReserveMy AccountLibrary Map


Making 20th century science : how theories became knowledge / Stephen G. Brush with Ariel Segal.

Author: Brush, Stephen G. author.

Imprint:Oxford ; New York : Oxford University Press, [2015]

Descriptionxvii, 531 pages ; 25 cm

Note:1. Who Needs the Scientific Method? -- 1.1. The Rings of Uranus -- 1.2. Maxwell and Popper -- 1.3. What is a Prediction? A Mercurial Definition -- 1.4. Hierarchy and Demarcation -- 1.5. What's Wrong with Quantum Mechanics? -- 1.6. Was Chemistry More Scientific than Physics (1865-1980)? Mendeleev's Periodic Law -- 1.7. Scientific Chemists: Benzene and Molecular Orbitals -- 1.8. The Unscientific (But Very Successful) Method of Dirac and Einstein: Can We Trust Experiments to Test Theories? -- 1.9. Why was Bibhas De's paper rejected by Icarus? -- 1.10. The Plurality of Scientific Methods -- 2. Reception Studies by Historians of Science -- 2.1. What is Reception? -- 2.2. The Copernican Heliocentric System -- 2.3. Newton's Universal Gravity -- 2.4. Darwin's Theory of Evolution by Natural Selection -- 2.5. Bohr Model of the Atom -- 2.6. Conclusions and Generalizations3. Prediction-Testing in the Evaluation of Theories: A Controversy in the Philosophy of Science -- 3.1. Introduction -- 3.2. Novelty in the Philosophy of Science -- 3.3. What is a Prediction? (Revisited) -- 3.4. Does Novelty Make a Difference? -- 3.5. Evidence from Case Histories -- 3.6. Are Theorists Less Trustworthy Than Observers? -- 3.7. The Fallacy of Falsifiability: Even the Supreme Court Was Fooled -- 3.8. Conclusions -- 4. The Rise and Fall of Social Constructionism 1975-2000 -- 4.1. The Problem of Defining Science and Technology Studies -- 4.2. The Rise of Social Constructionism -- 4.3. The Fall of Social Constructionism -- 4.4. Postmortem -- 4.5. Consequences for Science Studies -- 5. Mendeleev's Periodic Law -- 5.1. Mendeleev and the Periodic Law -- 5.2. Novel Predictions -- 5.3. Mendeleev's Predictions -- 5.4. Reception By Whom? -- 5.5. Tests of Mendeleev's Predictions -- 5.6. Before the Discovery of Gallium -- 5.7. The Impact of Gallium and Scandium5.8. The Limited Value of Novel Predictions -- 5.9. Implications of the Law -- 5.10. Conclusions -- 6. The Benzene Problem 1865-1930 -- 6.1. Kekules Theory -- 6.2. The First Tests of Kekules Theory -- 6.3. Alternative Hypotheses -- 6.4. Reception of Benzene Theories 1866-1880 -- 6.5. New Experiments, New Theories 1881-1900 -- 6.6. The Failure of Aromatic Empiricism 1901-1930 -- 7. The Light Quantum Hypothesis -- 7.1. Black-Body Radiation -- 7.2. Planck's Theory -- 7.3. Formulation of the Light-Quantum Hypothesis -- 7.4. The Wave Theory of Light -- 7.5. Einstein's Heuristic Viewpoint -- 7.6. What Did Millikan Prove? -- 7.7. The Compton Effect -- 7.8. Reception of Neo-Newtonian Optics before 1923 -- 7.9. The Impact of Compton's Discovery -- 7.10. Rupp's Fraudulent Experiments -- 7.11. Conclusions -- 8. Quantum Mechanics -- 8.1. The Bohr Model -- 8.2. The Wave Nature of Matter -- 8.3. Schrodinger's Wave Mechanics -- 8.4. The Exclusion Principle, Spin, and the Electronic Structure of Atoms8.5. Bose-Einstein Statistics -- 8.6. Fermi-Dirac Statistics -- 8.7. Initial Reception of Quantum Mechanics -- 8.8. The Community Is Converted -- 8.9. Novel Predictions of Quantum Mechanics -- 8.10. The Helium Atom -- 8.11. Reasons for Accepting Quantum Mechanics After 1928 -- 9. New Particles -- 9.1. Dirac's Prediction and Anderson's Discovery of the Positron -- 9.2. The Reception of Dirac's Theory -- 9.3. The Transformation of Dirac's Theory -- 9.4. Yukawa's Theory of Nuclear Forces -- 9.5. Discovery of the Muon and Reception of Yukawa's Theory -- 9.6. The Transformation of the Yukon -- 9.7. Conclusions -- 10. Benzene and Molecular Orbitals 1931-1980 -- 10.1. Resonance, Mesomerism, and the Mule 1931-1945 -- 10.2. Reception of Quantum Theories of Benzene 1932-1940 -- 10.3. Chemical Proof of Kekule's Theory -- 10.4. Antiresonance and the Rhinoceros -- 10.5. The Shift to Molecular Orbitals After 1950 -- 10.6. Aromaticity -- 10.7. The Revival of Predictive Chemistry -- 10.8. Reception of Molecular Orbital Theory By Organic Chemists10.9. Adoption of MO in Textbooks -- 10.10. A 1996 Survey -- 10.11. Conclusions -- 11. Relativity -- 11.1. The Special Theory of Relativity -- 11.2. General Theory of Relativity -- 11.3. Empirical Predictions and Explanations -- 11.4. Social-Psychological Factors -- 11.5. Aesthetic-Mathematical Factors -- 11.6. Early Reception of Relativity -- 11.7. Do Scientists Give Extra Credit for Novelty? The Case of Gravitational Light-Bending -- 11.8. Are Theorists Less Trustworthy Than Observers? -- 11.9. Mathematical-Aesthetic Reasons for Accepting Relativity -- 11.10. Social-Psychological Reasons for Accepting Relativity -- 11.11. A Statistical Summary of Comparative Reception -- 11.12. Conclusions -- 12. Big Bang Cosmology -- 12.1. The Expanding Universe Is Proposed -- 12.2. The Age of the Earth -- 12.3. The Context for the Debate: Four New Sciences and One Shared Memory -- 12.4. Cosmology Constrained by Terrestrial Time -- 12.5. Hubble Doubts the Expanding Universe -- 12.6. A Radical Solution: Steady-State Cosmology12.7. Astronomy Blinks: Slowing the Expansion -- 12.8. Lemaitre's Primeval Atom and Gamow's Big Bang -- 12.9. Arguments for Steady-State Weaken -- 12.10. The Temperature of Space -- 12.11. Discovery of the Cosmic Microwave Background -- 12.12. Impact of the Discovery on Cosmologists -- 12.13. Credit for the Prediction -- 12.14. Conclusions -- 13. Morgan's Chromosome Theory -- 13.1. Introduction -- 13.2. Is Biology Like Hypothetico-Deductive Physics? -- 13.3. Precursors -- 13.4. Morgan's Theory -- 13.5. The Problem of Universality -- 13.6. Morgan's Theory in Research Journals -- 13.7. Important Early Supporters -- 13.8. Bateson and the Morgan Theory in Great Britain -- 13.9. The Problem of Universality Revisited -- 13.10. Books and Review Articles on Genetics, Evolution, and Cytology -- 13.11. Biology Textbooks -- 13.12. Age Distribution of Supporters and Opponents -- 13.13. Conclusions -- 14. The Revival of Natural Selection 1930-1970 -- 14.1. Introduction14.2. Fisher: A New Language for Evolutionary Research -- 14.3. Wright: Random Genetic Drift, a Concept Out of Control -- 14.4. Haldane: A Mathematical-Philosophical Biologist Weighs In -- 14.5. Early Reception of the Theory -- 14.6. Dobzhansky: The Faraday of Biology? -- 14.7. Evidence for Natural Selection, Before 1941 -- 14.8. Huxley: A New Synthesis Is Proclaimed -- 14.9. Mayr: Systematics and the Founder Principle -- 14.10. Simpson: No Straight and Narrow Path for Paleontology -- 14.11. Stebbins: Plants Are Also Selected -- 14.12. Chromosome Inversions in Drosophila -- 14.13. Ford: Unlucky Blood Groups -- 14.14. Resistance to Antibiotics -- 14.15. Two Great Debates: Snails and Tiger Moths -- 14.16. Selection and/or Drift? The Changing Views of Dobzhansky and Wright -- 14.17. The Views of Other Founders and Leaders -- 14.18. The Peppered Moth -- 14.19. The Triumph of Natural Selection? -- 14.20. Results of a Survey of Biological Publications14.21. Is Evolutionary Theory Scientific? -- 14.22. Context and Conclusions -- 15. Which Works Faster: Prediction or Explanation? -- 15.1. Comparison of Cases Presented in this Book -- 15.2. From Princip to Principe -- 15.3. Can Explanation Be Better Than Prediction? -- 15.4. Special Theory of Relativity: Explaining "Nothing" -- 15.5. The Old Quantum Theory: Many Things Are Predicted, But Few Are Explained -- 15.6. Quantum Mechanics: Many Things are Explained, But Predictions Are Confirmed Too Late -- 15.7. Millikan's Walk.

Bibliography Note:Includes bibliographical references (pages 501-512) and index.



This item has been checked out 0 time(s)
and currently has 0 hold request(s).

Related Searches
Author:
Brush, Stephen G. author.
Title:
Making twentieth century science
Subject:
Science -- Methodology -- History -- 20th century.
Science -- History -- 20th century.
Science -- Methodology -- History -- 19th century.
Science -- History -- 19th century.
Contributor
Segal, Ariel, author.